第一题,证明柯西施瓦茨不等式:xxxxxx一个手机无法显示的数学式子,并给出等号成立的条件。
这题不算太难,《高等代数》的入门级证明题,考的是内积空间概念。
沈奇很快完成证明,在白纸上写出证明过程。
系统:“宿主解题成功,奖励2点学霸积分。”
“哟呵,2点学霸积分。”沈奇现在做高中数学题已经拿不到学霸积分了,但是做大学数学题可以获取学霸积分。
与此同时,语文老师走进教室,这节是语文课。
沈奇心无旁骛破解张万邦的数学题,他没有认真听语文课,人的精力毕竟有限,难以一心二用。
张万邦出的第二道题是求解一个线性方程组,需要综合运用高斯消元法和增广矩阵的性质,难度有所提升。
沈奇在解题过程中遇到了一些障碍,对线性方程组实施初等变换,相当于对其增广矩阵实施行的变换。
方程组增广矩阵
增广矩阵方程组
将第一个方程中的x1项消去
那么增广矩阵的第三行发生变换
将第二个方程的4倍加到第三个方程上,消去第三个方程中的x2项,得到一个阶梯形方程组
那么增广矩阵也要变换为……